165 research outputs found

    Quantum fluctuation of ferroelectric order in polar metals

    Full text link
    Since its discovery a decade ago, "polar metallic phase" has ignited significant research interest, as it further functionalizes the switchable electric polarization of materials with additional transport capability, granting them great potential in next-generation electronic devices. The polar metallic phase is an unusual metallic phase of matter containing long-range ferroelectric (FE) order in the electronic and atomic structure. Distinct from the typical FE insulating phase, this phase spontaneously breaks the inversion symmetry but without global polarization. Unexpectedly, the FE order is found to be dramatically suppressed by carriers and destroyed at moderate ~10% carrier density. Here, we propose a general mechanism based on carrier-induced quantum fluctuations to explain this puzzling phenomenon. Basically, the quantum kinetic effect would drive the formation of polaronic quasi-particles made of the carriers and their surrounding dipoles. The disruption in dipolar directions can therefore weaken or even destroy the FE order. We demonstrate such polaron formation and the associated FE suppression via a simple model using exact diagonalization, perturbation, and quantum Monte Carlo approaches. This quantum mechanism also provides an intuitive picture for many puzzling experimental findings, thereby facilitating new designs of multifunctional FE electronic devices augmented with quantum effects.Comment: 12 pages, 6 figures in tota

    Personalized PageRank on Evolving Graphs with an Incremental Index-Update Scheme

    Full text link
    {\em Personalized PageRank (PPR)} stands as a fundamental proximity measure in graph mining. Since computing an exact SSPPR query answer is prohibitive, most existing solutions turn to approximate queries with guarantees. The state-of-the-art solutions for approximate SSPPR queries are index-based and mainly focus on static graphs, while real-world graphs are usually dynamically changing. However, existing index-update schemes can not achieve a sub-linear update time. Motivated by this, we present an efficient indexing scheme to maintain indexed random walks in expected O(1)O(1) time after each graph update. To reduce the space consumption, we further propose a new sampling scheme to remove the auxiliary data structure for vertices while still supporting O(1)O(1) index update cost on evolving graphs. Extensive experiments show that our update scheme achieves orders of magnitude speed-up on update performance over existing index-based dynamic schemes without sacrificing the query efficiency

    Far-Infrared Spectroscopy of Cationic Polycyclic Aromatic Hydrocarbons: Zero Kinetic Energy Photoelectron Spectroscopy of Pentacene Vaporized from Laser Desorption

    Get PDF
    doi:10.1088/0004-637X/715/1/485The distinctive set of infrared (IR) emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are ubiquitously seen in a wide variety of astrophysical environments. They are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. However, not a single PAH species has yet been identified in space, as the mid-IR vibrational bands are mostly representative of functional groups and thus do not allow one to fingerprint individual PAH molecules. In contrast, the far-IR (FIR) bands are sensitive to the skeletal characteristics of a molecule, hence they are important for chemical identification of unknown species. With an aim to offer laboratory astrophysical data for the Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy, and similar future space missions, in this work we report neutral and cation FIR spectroscopy of pentacene (C22H14), a five-ring PAH molecule. We report three IR active modes of cationic pentacene at 53.3, 84.8, and 266 μm that may be detectable by space missions such as the SAFARI instrument on board SPICA. In the experiment, pentacene is vaporized from a laser desorption source and cooled by a supersonic argon beam. We have obtained results from two-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy photoelectron (ZEKE) spectroscopy. Several skeletal vibrational modes of the first electronically excited state of the neutral species and those of the cation are assigned, with the aid of ab initio and density functional calculations. Although ZEKE is governed by the Franck-Condon principle different from direct IR absorption or emission, vibronic coupling in the long ribbon-like molecule results in the observation of a few IR active modes. Within the experimental resolution of ~7 cm-1, the frequency values from our calculation agree with the experiment for the cation, but differ for the electronically excited intermediate state. Consequently, modeling of the intensity distribution is difficult and may require explicit inclusion of vibronic interactions.This work is supported by the National Aeronautics and Space Administration under award No. NNX09AC03G. A.L. is supported in part by the NSF grant AST 07-07866, a Spitzer Theory grant and a Herschel Theory grant

    Attenuation of osteoarthritis via blockade of the SDF-1/CXCR4 signaling pathway

    Get PDF
    This study was performed to evaluate the attenuation of osteoarthritic (OA) pathogenesis via disruption of the stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) signaling with AMD3100 in a guinea pig OA model. OA chondrocytes and cartilage explants were incubated with SDF-1, siRNA CXCR4, or anti-CXCR4 antibody before treatment with SDF-1. Matrix metalloproteases (MMPs) mRNA and protein levels were measured with real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The 35 9-month-old male Hartley guinea pigs (0.88 kg ± 0.21 kg) were divided into three groups: AMD-treated group (n = 13); OA group (n = 11); and sham group (n = 11). At 3 months after treatment, knee joints, synovial fluid, and serum were collected for histologic and biochemical analysis. The severity of cartilage damage was assessed by using the modified Mankin score. The levels of SDF-1, glycosaminoglycans (GAGs), MMP-1, MMP-13, and interleukin-1 (IL-1β) were quantified with ELISA. SDF-1 infiltrated cartilage and decreased proteoglycan staining. Increased glycosaminoglycans and MMP-13 activity were found in the culture media in response to SDF-1 treatment. Disrupting the interaction between SDF-1 and CXCR4 with siRNA CXCR4 or CXCR4 antibody attenuated the effect of SDF-1. Safranin-O staining revealed less cartilage damage in the AMD3100-treated animals with the lowest Mankin score compared with the control animals. The levels of SDF-1, GAG, MMP1, MMP-13, and IL-1β were much lower in the synovial fluid of the AMD3100 group than in that of control group. The binding of SDF-1 to CXCR4 induces OA cartilage degeneration. The catabolic processes can be disrupted by pharmacologic blockade of SDF-1/CXCR4 signaling. Together, these findings raise the possibility that disruption of the SDF-1/CXCR4 signaling can be used as a therapeutic approach to attenuate cartilage degeneration

    Ba6RE2Ti4O17 (RE= Nd, Sm,Gd, Dy-Yb): A family of quasi-two-dimensional triangular lattice magnets

    Full text link
    Rare-earth-based triangular-lattice magnets provide the fertile ground to explore the exotic quantum magnetic state. Herein, we report a new family of RE-based triangular-lattice magnets Ba6RE2Ti4O17(RE= rare earth ions) crystallized into the hexagonal structure with space group of P63 mmc, where magnetic rare earth ions form an ideal triangular lattice within the ab-plane and stack in an AA -type fashion along the c-axis. The low-temperature magnetic susceptibility results reveal all the serial compounds have the dominant antiferromagnetic interactions and an absence of magnetic ordering down to 1.8 K. The magnetization and electron spin resonance results indicate distinct magnetic anisotropy for the compounds with different RE ions. Moreover, Ba6Nd2Ti4O17 single crystal is successfully grown and it exhibits strong Ising like anisotropy with magnetic easy-axis perpendicular to the triangle-lattice plane, being a candidate to explore quantum spin liquid state with dominant Ising-type interaction.Comment: 18 pages, 8 figure

    RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aromatic rice is popular worldwide because of its characteristic fragrance. Genetic studies and physical fine mapping reveal that a candidate gene (<it>fgr</it>/<it>OsBADH2</it>) homologous to <it>betaine aldehyde dehydrogenase </it>is responsible for aroma metabolism in fragrant rice varieties, but the direct evidence demonstrating the functions of <it>OsBADH2 </it>is lacking. To elucidate the physiological roles of <it>OsBADH2</it>, sequencing approach and RNA interference (RNAi) technique were employed to analyze allelic variation and functions of <it>OsBADH2 </it>gene in aroma production. Semi-quantitative, real-time reverse transcription-polymerase chain reaction (RT-PCR), as well as gas chromatography-mass spectrometry (GC-MS) were conducted to determine the expression levels of <it>OsBADH2 </it>and the fragrant compound in wild type and transgenic <it>OsBADH2</it>-RNAi repression lines, respectively.</p> <p>Results</p> <p>The results showed that multiple mutations identical to <it>fgr </it>allele occur in the 13 fragrant rice accessions across China; <it>OsBADH2 </it>is expressed constitutively, with less expression abundance in mature roots; the disrupted <it>OsBADH2 </it>by RNA interference leads to significantly increased 2-acetyl-1-pyrroline production.</p> <p>Conclusion</p> <p>We have found that the altered expression levels of <it>OsBADH2 </it>gene influence aroma accumulation, and the prevalent aromatic allele probably has a single evolutionary origin.</p

    Non-invasive detection of lymphoma with circulating tumor DNA features and protein tumor markers

    Get PDF
    BackgroundAccording to GLOBOCAN 2020, lymphoma ranked as the 9th most common cancer and the 12th leading cause of cancer-related deaths worldwide. Traditional diagnostic methods rely on the invasive excisional lymph node biopsy, which is an invasive approach with some limitations. Most lymphoma patients are diagnosed at an advanced stage since they are asymptomatic at the beginning, which has significantly impacted treatment efficacy and prognosis of the disease.MethodThis study assessed the performance and utility of a newly developed blood-based assay (SeekInCare) for lymphoma early detection. SeekInCare utilized protein tumor markers and a comprehensive set of cancer-associated genomic features, including copy number aberration (CNA), fragment size (FS), end motif, and lymphoma-related virus, which were profiled by shallow WGS of cfDNA.ResultsProtein marker CA125 could be used for lymphoma detection independent of gender, and the sensitivity was 27.8% at specificity of 98.0%. After integrating these multi-dimensional features, 77.8% sensitivity was achieved at specificity of 98.0%, while its NPV and PPV were both more than 92% for lymphoma detection. The sensitivity of early-stage (I-II) lymphoma was up to 51.3% (47.4% and 55.0% for stage I and II respectively). After 2 cycles of treatment, the molecular response of SeekInCare was correlated with the clinical outcome.ConclusionIn summary, a blood-based assay can be an alternative to detect lymphoma with adequate performance. This approach becomes particularly valuable in cases where obtaining tissue biopsy is difficult to obtain or inconclusive

    The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry

    Get PDF
    Flatfish have the most extreme asymmetric body morphology of vertebrates. During metamorphosis, one eye migrates to the contralateral side of the skull, and this migration is accompanied by extensive craniofacial transformations and simultaneous development of lopsided body pigmentation(1-5). The evolution of this developmental and physiological innovation remains enigmatic. Comparative genomics of two flatfish and transcriptomic analyses during metamorphosis point to a role for thyroid hormone and retinoic acid signaling, as well as phototransduction pathways. We demonstrate that retinoic acid is critical in establishing asymmetric pigmentation and, via cross-talk with thyroid hormones, in modulating eye migration. The unexpected expression of the visual opsins from the phototransduction pathway in the skin translates illumination differences and generates retinoic acid gradients that underlie the generation of asymmetry. Identifying the genetic underpinning of this unique developmental process answers long-standing questions about the evolutionary origin of asymmetry, but it also provides insight into the mechanisms that control body shape in vertebrates.National Natural Science Foundation of China [31130057, 31461163005, 31530078, 31472269, 31472262, 31472273]; State 863 High Technology R&D Project of China [2012AA092203, 2012AA10A408, 2012AA10A403-2]; Education and Research of Guangdong Province [2013B090800017]; Taishan Scholar Climb Project Fund of Shandong of China; Taishan Scholar Project Fund of Shandong of China for Young Scientists; Shanghai Universities First-class Disciplines Project of Fisheries; Program for Professor of Special Appointment (Eastern Scholar) at the Shanghai Institutions of Higher Learning; Shanghai Municipal Science, Special Project on the Integration of Industryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/publishedVersio
    corecore